Ensino Fundamental
Sala de Aula
Um quadrado que mede
Organizado por: Cristiane Chica – coordenadora do Nutec
Maira Costa
Objetivos:
  • Realizar medições usando o metro quadrado;
  • Fazer estimativas de medidas de superfície;
  • Compreender o conceito de metro quadrado.
Habilidades desenvolvidas:
  • Interpretar diferentes textos em diferentes linguagens;
  • Coletar, organizar e registrar informações, estabelecendo relações;
  • Formular perguntas e hipóteses;
  • Mobilizar informações, conceitos e procedimentos na resolução de situações-problema;
  • Desenvolver uma linguagem relativa a grandezas e medidas.
Material necessário:
  • Jornais antigos
  • Panfleto de propaganda imobiliária com planta baixa de um imóvel
  • Cópia do texto “Como calcular o tamanho das multidões de torcedores?”
  • Fita métrica ou trena
  • Barbante
  • Tesoura e fita adesiva
  • Material para registro
Proposta da atividade:
  • Construção de 1 metro quadrado de papel;
  • Construção de uma explicação pessoal sobre o que é o metro quadrado;
  • Realização de estimativas e medidas utilizando o metro quadrado;
  • Comparação entre o metro quadrado e o metro linear;
  • Vivência de uma situação real de medida e estimativa usando o metro quadrado como unidade de medida.
Forma de desenvolvimento:

Iniciando a
conversa

Uma boa maneira de iniciar o estudo de metro quadrado é provocar uma discussão entre os alunos gerada por dados contidos em textos como o que segue:

Como calcular o tamanho das multidões de torcedores?

Fonte: http://jornalnacional.globo.com/Jornalismo/JN/0,,AA1224608-3586-491516,00.html
Adaptado para fins didáticos

Amanhã milhões de brasileiros vão se reunir para torcer pela seleção. Em São Paulo a concentração é no Vale do Anhangabaú. E, como sempre, o cálculo de quantas pessoas estarão na festa vai passar bem longe da precisão matemática.

Aperto no Vale do Anhangabaú para torcer pelo Brasil. Pelas contas dos organizadores, 60 mil pessoas. Para a Polícia Militar, 25 mil. Por que a diferença ?

“É uma estimativa que se faz, alguém bate o olho lá e avalia”, diz o matemático José Dutra Sobrinho.

Mas a avaliação não é feita no chute, porque isso não é futebol. Existe um método para contar a multidão: uma, duas, três, quatro pessoas numa área que tem um metro quadrado. Esse é o padrão internacional de contagem.

[...]

O Vale do Anhangabaú, por exemplo, tem 8 mil metros quadrados livres, ou seja, lugar para cerca de 32 mil pessoas. Os torcedores ocuparam quase toda a área, mas com vários espaços vazios.

“O palpite de 60 mil pessoas pode ser considerado uma bola fora. Já a PM, com a estimativa de 25 mil, bateu na trave, 20 mil seria um gol”, aponta o matemático.

 

Após a leitura, o professor pode solicitar aos alunos que localizem no texto qual foi a maneira utilizada pelos organizadores e pela Polícia Militar para estimar a quantidade de pessoas no Vale do Anhangabaú, segundo o matemático José Dutra Sobrinho.
Outra informação que devem localizar no texto é qual o método internacional existente para esse tipo de cálculo.

Com essas duas informações destacadas, o professor deve perguntar aos alunos: “Qual é a forma mais adequada de fazer uma estimativa da quantidade de crianças que caberiam em nossa sala de aula?“.

A partir desse problema, a idéia é que os alunos se perguntem o que vem a ser um metro quadrado.

Criando um metro quadrado de jornal

O professor proporá aos alunos que construam um metro quadrado de jornal para checar a informação a respeito do número de pessoas que cabem em um metro quadrado.

Em pequenos grupos, usando fita métrica ou trena, o jornal e a fita adesiva, o professor questionará como será que se constrói um metro quadrado. Durante a discussão, eles devem concluir que se trata de um quadrado com lados medindo 1 m. Deixe que cada grupo construa o seu metro quadrado.

Com o metro quadrado em mãos, os alunos poderão verificar o que da sala de aula cabe dentro do metro quadrado de jornal.

Solicite que deverão colocar-se em pé dentro de um metro quadrado e verificar se a informação sobre a quantidade de pessoas por metro quadrado, segundo o padrão internacional de contagem, é válida ou não. Aproveite e explore outras situações, como: e se as pessoas estiverem sentadas, caberá a mesma quantidade? E se tiverem deitadas? E se estiverem de braços abertos?

Retome com os alunos o problema dado inicialmente: “Qual é a forma mais adequada de fazer uma estimativa da quantidade de crianças que caberiam em nossa sala de aula?“.

Deixem que os alunos escolham a melhor estratégia para resolver o problema. Eles podem verificar quantos metros quadrados cabem na sala de aula, recobrindo a superfície com os metros quadrados construídos e multiplicando pela quantidade de alunos que cabem dentro do jornal.

Após essa atividade, proponha que, em grupos, façam um registro usando desenhos com uma explicação sobre o que é um metro quadrado e como utilizá-lo para medir superfícies. A partir dos registros dos alunos, proponha a produção de um texto coletivo, que deverá ficar exposto na sala para possíveis consultas posteriores.

Medindo outros
espaços da escola

Após a atividade anterior, proponha aos alunos, usando procedimento semelhante ao anterior e com os mesmos materiais, que realizem a medição de uma outra área da escola, como uma quadra, um pátio ou um corredor. Basta que esse espaço esteja livre de objetos ou móveis. Dessa forma, fica mais fácil os alunos observarem a atividade.

Determinada a área que será medida, verifique se os alunos percebem que, ao medirem algumas superfícies, às vezes sobram e outras vezes faltam partes do metro quadrado de jornal que eles estão usando como medida-padrão. Quando isso ocorrer, questione os alunos sobre o que fazer e dê tempo para pensarem em como resolver esse tipo de problema.

Nesse momento, com os alunos divididos em pequenos grupos, estimule-os a encontrar estratégias pessoais de resolução para esse problema. Solicite que registrem em folhas de papel branco as soluções encontradas e as socializem com o restante da classe.

Espera-se que os alunos cheguem à conclusão de que o metro quadrado pode ser dividido em partes menores para recobrir a superfície que ficou sem cobertura. O professor pede aos alunos que dividam um metro quadrado em partes menores atentando para que dividam um metro quadrado por vez. Espera-se que os alunos percebam que, mesmo dividida, a área do quadrado continua sendo a mesma e que, se for necessário, mais subdivisões poderão ser feitas.

Observando panfletos com plantas baixas

Usando panfletos promocionais com a planta baixa de imóveis, lance um problema para motivar os alunos para o tema que será trabalhado, provocando e envolvendo-os. Uma sugestão é imaginar que os donos do imóvel em questão querem trocar o piso de um cômodo retangular do imóvel e desejam cobrir toda a superfície com cerâmica. Como será que os alunos poderiam ajudar? Nesse momento espera-se que percebam a necessidade de realizar o cálculo da área dos cômodos.

Com essa planta e suas medidas, o professor poderá propor que os alunos reproduzam um cômodo do imóvel usando os metros quadrados de jornal construídos na atividade anterior, estimem e depois meçam a área desse cômodo.

Assim que descobrirem a área do cômodo retangular, proponha aos alunos que calculem quantos metros quadrados de piso os donos do imóvel deveriam comprar para recobrir o cômodo e quanto seria gasto nessa reforma, sabendo-se que o dono pagará R$ 24,00 pelo metro quadrado do piso que gostaria de colocar.

Deixe que os alunos resolvam o problema e faça um painel com as diferentes formas de solução encontradas por eles.